
G56... (H) Similar Shapes - Area and Volume

			Video created by W Neill
		sm P and prism Q are similar. e ratio of the surface area of prism P to the surface area of prism Q is 1:3.	
GSS	(i)	Jay says	
		The height of prism P is one third of the height of prism \mathbb{Q} .	
		Explain why he is wrong.	
			[1]
	(ii)	The volume of prism Q is 86 cm ³ .	
		Calculate the volume of prism P.	

(b)(ii)cm³ [3]

(b) The volume of a full-size train carriage is 220 m³. Trevor calculates the volume of a model train carriage to be 334 cm³ correct to 3 significant figures. Show how you decide.	Created by W Neill
	[3]

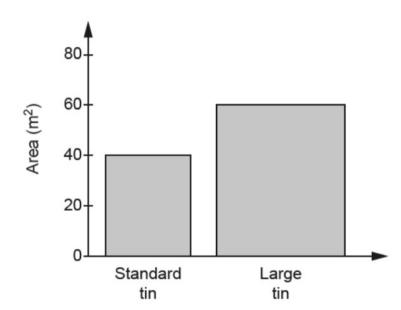
(b) The volume of a full-size train carriage is 220 m³.

Created by W Neill

Trevor calculates the volume of a model train carriage to be 334 cm³ correct to 3 significant figures.

G56

Is Trevor's calculation correct? Show how you decide.


Volume Sf X873 1000000cm3 = 1m3

Percy sells paint in standard tins and large tins.
The standard tin covers 40 m² and the large tin covers 60 m².

Created by W Neill

(a) Percy publishes this chart showing the area that can be covered with each tin of paint.

G55/56

Explain why the chart is misleading.

.....

.....

Created	by	W	Neill	
---------	----	---	-------	--

(b)	The standard tin	and the la	arge tin are	mathematically	similar
(~/	ino otanaara tiir	a	argo arraro	maniomani	0

The **volume** of the large tin is 50% more than the volume of the standard tin.

Both tins are cylinders.

The radius of the standard tin is 10 cm.

Calculate the radius of the large tin.


......cm [4] (b)

Percy sells paint in standard tins and large tins.
The standard tin covers 40 m² and the large tin covers 60 m².

Created by W Neill

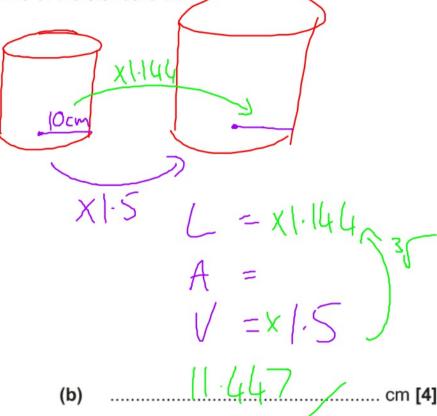
(a) Percy publishes this chart showing the area that can be covered with each tin of paint.

G55/56

Explain why the chart is misleading.

width of bars need to be equal

Created by W Neill


(b) The standard tin and the large tin are mathematically similar.

The **volume** of the large tin is 50% more than the volume of the standard tin.

Both tins are cylinders.

The radius of the standard tin is 10 cm.

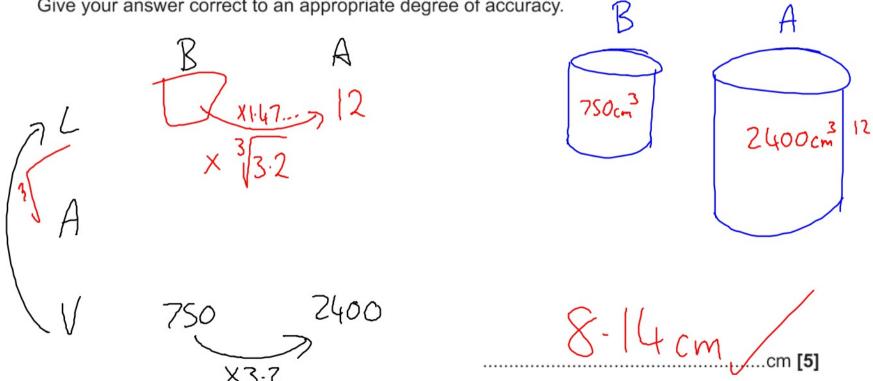
Calculate the radius of the large tin.

Video	created	by	W	Nei
-------	---------	----	---	-----

- 19 Two cylinders, A and B, are mathematically similar.
- G56 Cylinder A has volume 2400 cm³ and height 12 cm. Cylinder B has volume 750 cm³.

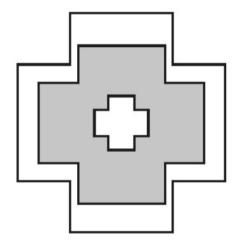
Find the height of cylinder B.

Give your answer correct to an appropriate degree of accuracy.


.....cm [5]

Two cylinders, A and B, are mathematically similar.

G56 Cylinder A has volume 2400 cm³ and height 12 cm. Cylinder B has volume 750 cm³.

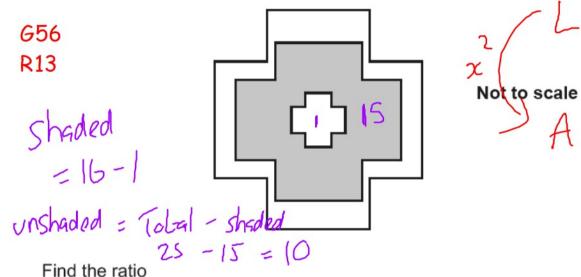

Find the height of cylinder B.

Give your answer correct to an appropriate degree of accuracy.

17 The diagram consists of three mathematically similar shapes. The heights of the shapes are in the ratio 1 : 4 : 5.

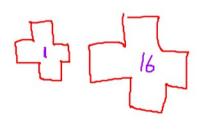
*G*56 R13

Not to scale


Find the ratio

total shaded area: total unshaded area.

Give your answer in its simplest form.


The diagram consists of three mathematically similar shapes. The heights of the shapes are in the ratio 1:4:5.

Area Scale factors

total shaded area: total unshaded area.

Give your answer in its simplest form.

Shade: unshaded

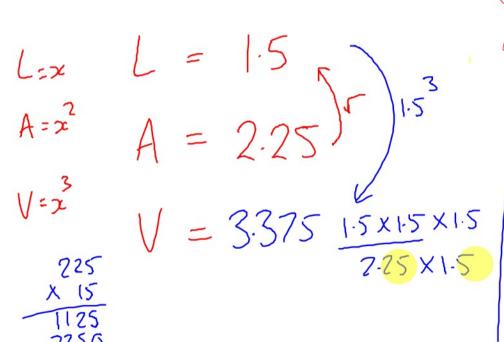
25

total shaded area: total unshaded area

EDEXCEL

18 Solid A and solid B are mathematically similar. Video created by W Neill The ratio of the surface area of solid **A** to the surface area of solid **B** is 4:9 The volume of solid **B** is $405 \, \text{cm}^3$. Show that the volume of solid A is 120 cm³. (Total for Question 18 is 3 marks)

18 Solid A and solid B are mathematically similar.


Video created by W Neill

The ratio of the surface area of solid **A** to the surface area of solid **B** is 4:9

4cm

The volume of solid \mathbf{B} is $405\,\mathrm{cm}^3$.

Show that the volume of solid A is 120 cm³.

$$\frac{1}{8} = 0.125$$

$$\frac{3}{8} = 0.375$$

$$405 \div 3.375 = 120$$

$$120 \times 3.375 = 405$$
Same thing

$$120 \times 3 = 360$$

 $120 \times 3 = 360$
 120

(Total for Question 18 is 3 marks)

Video	created	by	W	Neil	
-------	---------	----	---	------	--

20 Mark has made a clay model.

He will now make a clay statue that is mathematically similar to the clay model.

The model has a base area of 6 cm²

The statue will have a base area of 253.5 cm²

Mark used 2kg of clay to make the model.

Clay is sold in 10kg bags.

Mark has to buy all the clay he needs to make the statue.

How many bags of clay will Mark need to buy?

(Total for Question 20 is 3 marks)

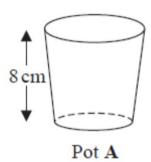
20 Mark has made a clay model.

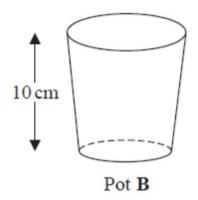
He will now make a clay statue that is mathematically similar to the clay model.

Video created by W Neill

The model has a base area of 6 cm² The statue will have a base area of 253.5 cm²

Mark used 2kg of clay to make the model.


Clay is sold in 10kg bags.


Mark has to buy all the clay he needs to make the statue.

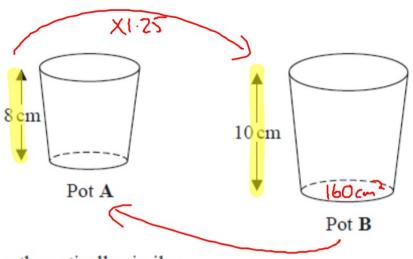
How many bags of clay will Mark need to buy?

Bags needed = 549.75 = 10 - 54.925 55 V.

(Total for Question 20 is 3 marks)

Pot ${\bf A}$ and pot ${\bf B}$ are mathematically similar.

The area of the base of pot $\bf B$ is $160\,{\rm cm}^2$.


Work out the area of the base of pot ${\bf A}.$

..... cm²

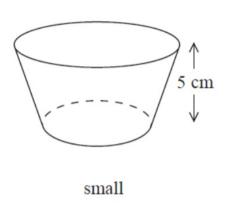
(Total for Question 15 is 2 marks)

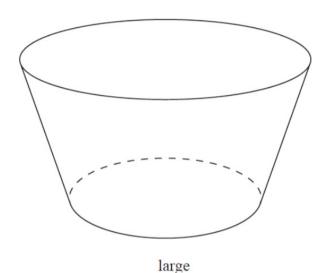
15 Here are two pots.

Video created by W Neill

Pot A and pot B are mathematically similar.

The area of the base of pot $\bf B$ is $160\,{\rm cm}^2$.


Work out the area of the base of pot A.


Length = $\times 1.25$ Area $\times 1.25$ Volume $\times 1.25^3$

102.4 ____ em²

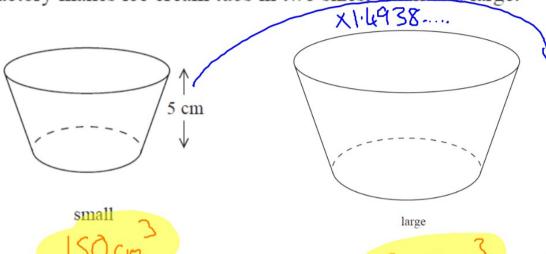
(Total for Question 15 is 2 marks)

17 A factory makes ice cream tubs in two sizes, small and large.

The tubs are similar in shape.

The height of the small tub is 5 cm

The volume of the small tub is 150 cm³. The volume of the large tub is 500 cm³.


Work out the height of the large tub. Give your answer correct to 3 significant figures.

cm

(Total for Question 17 is 2 marks)

Created by W Neill

17 A factory makes ice cream tubs in two sizes, small and large.

X

The tubs are similar in shape.

The height of the small tub is 5 cm

The volume of the small tub is 150 cm³ The volume of the large tub is 500 cm³

Work out the height of the large tub. Give your answer correct to 3 significant figures.

$$\int_{3}^{2} L = Sf = 1.4938$$

$$\int_{3}^{2} A = (Sf)^{3}$$

$$\int_{3}^{2} (Sf)^{3} = 3.3$$

7.47 cm

(Total for Question 17 is 2 marks)

Created	by	W	Neil
CI CUICU	\sim		1 4011

 $14\,$ Cone A and cone B are mathematically similar.

The ratio of the volume of cone \mathbf{A} to the volume of cone \mathbf{B} is 27:8

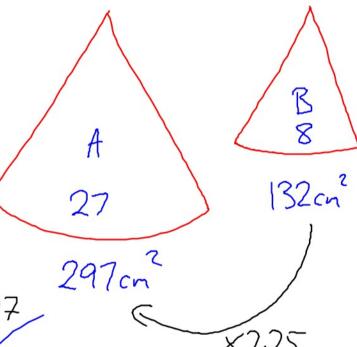
The surface area of cone A is 297 cm²

Show that the surface area of cone B is 132 cm²

(Total for Question 14 is 3 marks)

14 Cone **A** and cone **B** are mathematically similar.

The ratio of the volume of cone **A** to the volume of cone **B** is 27:8


The surface area of cone A is 297 cm²

Show that the surface area of cone **B** is 132 cm²

7L = 1.5 A = 7.25 V = 3.375

8 v337) 27 -3-375

132 x 2.25 = 797

(Total for Question 14 is 3 marks)

surface area of shape \mathbf{A} : surface area of shape $\mathbf{B} = 3:4$

The volume of shape ${\bf B}$ is $10\,{\rm cm}^3$

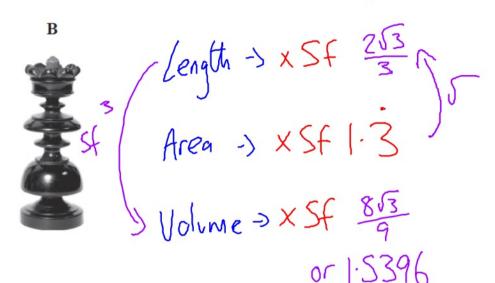
Work out the volume of shape A. Give your answer correct to 3 significant figures.

 cm^3

(Total for Question 13 is 3 marks)

G56

Area X1.3


A

surface area of shape \mathbf{A} : surface area of shape $\mathbf{B} = 3:4$

The volume of shape **B** is 10 cm³

Work out the volume of shape A.

Give your answer correct to 3 significant figures.

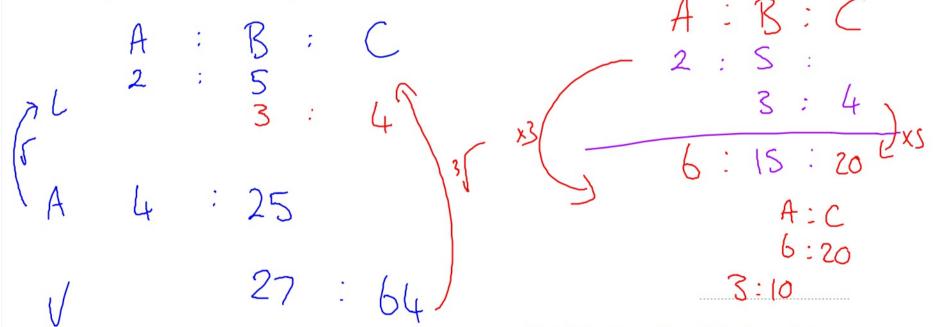
A B 6.495cm³ 10cm - 1.5396 6.5

(Total for Question 13 is 3 marks)

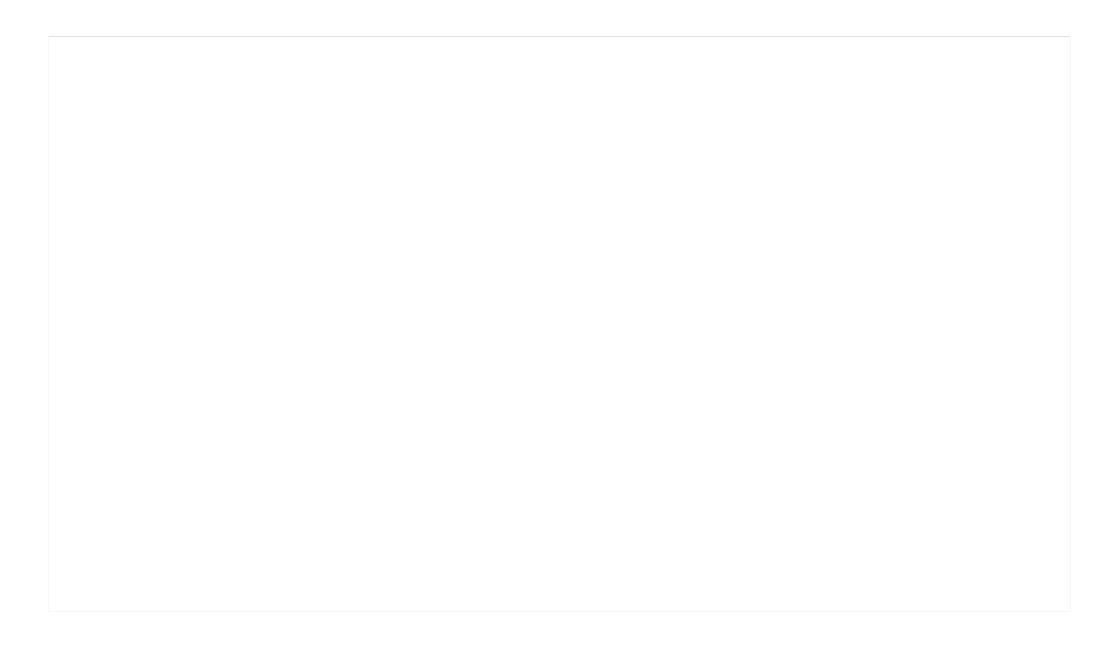
 cm^3

15 Three solid shapes A, B and C are similar. Video Created by W Neill R15a The surface area of shape A is 4 cm² **656** The surface area of shape **B** is 25 cm² The ratio of the volume of shape **B** to the volume of shape **C** is 27:64 Work out the ratio of the height of shape A to the height of shape C. Give your answer in its simplest form. (Total for Question 15 is 4 marks)

15 Three solid shapes A, B and C are similar.


Video Created by W Neill

R15a The surface area of shape A is 4 cm²


656 The surface area of shape B is 25 cm²

The ratio of the volume of shape **B** to the volume of shape **C** is 27:64

Work out the ratio of the height of shape A to the height of shape C. Give your answer in its simplest form.

(Total for Question 15 is 4 marks)

AQA

Video created by W Neill 17 A and B are similar solids. [1 mark] Solid length (cm) G56 Α 21 В Alex says, "The volume of B is double the volume of A because the length of B is double the length of A." Is he correct? Tick a box. Yes No Give a reason for your answer.

Video created by W Neill 17 A and B are similar solids. [1 mark] Solid length (cm) G56 A Sf X2 В 21 Alex says, "The volume of B is double the volume of A because the length of B is double the length of A." Is he correct? Tick a box. Should be Scale factor --- ie 2 No Yes Give a reason for your answer.

Video created by W Neill Circle the volume that is the same as 15 cm^3 13 [1 mark] G56 15 000 mm³ 1.5 mm³ 0.0015 mm³ 150 mm³

Video created by W Neill

Circle the volume that is the same as 15 cm³ 13

[1 mark]

G56

1.5 mm³

0.0015 mm³

150 mm³

$$\sim 10^3$$
 $\sim 10^3$ $\sim 10^3$ $\sim 10^3$ $\sim 10^3$

= (2000 = (2000

23 <i>G</i> 56	Solids X and Y are similar. X has volume 64 cm ³ Y has volume 343 cm ³ The surface area of X is 176 cm ²		Video created by W Neill
	Work out the surface area of Y.		[3 marks]
		Answer	cm ²

23 Solids X and Y are similar.

G56

X has volume 64 cm³

Y has volume 343 cm³

The surface area of X is 176 cm²

Work out the surface area of Y.

LSF

X X1.75

X 1.75

Area SF 176

539

1.75

VolumeSF 64

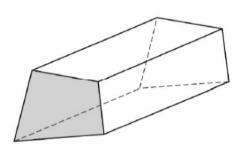
X 5.359375

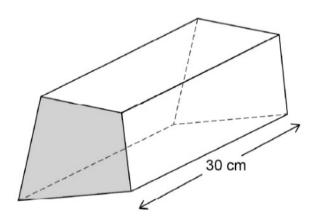
Video created by W Neill

Answer _____ cm²

23 Prisms A and B are similar.

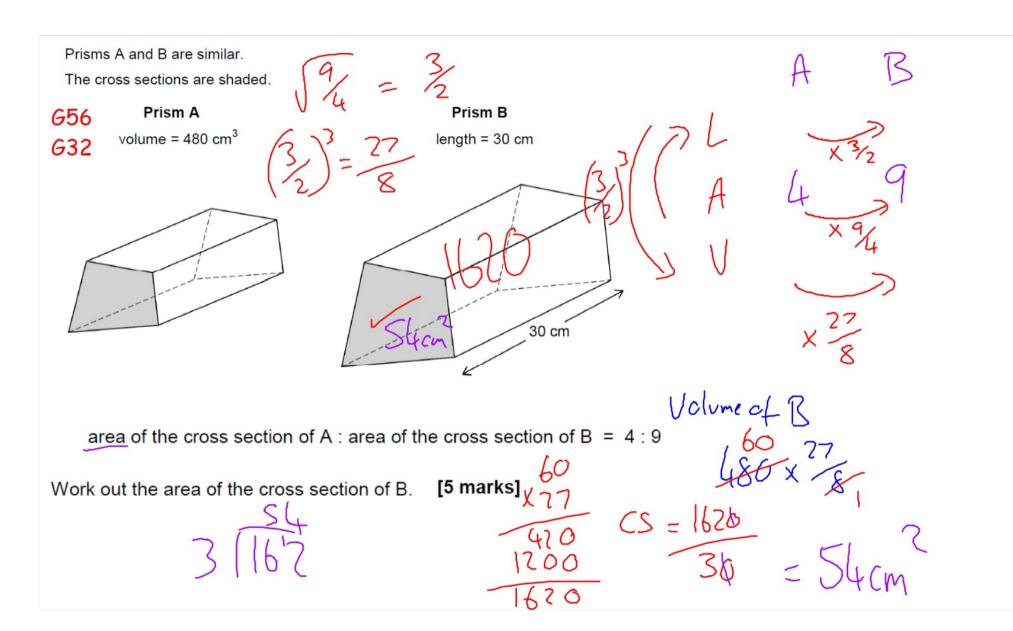
The cross sections are shaded.


Prism A


*G*56

632 volume = 480 cm³

Prism B


length = 30 cm

area of the cross section of A: area of the cross section of B = 4:9

Work out the area of the cross section of B. [5 marks]

