directed numbers
(1)

Use the bar models to help you substitute $y=-5$ into the expressions.

(2) Evaluate the expressions when $g=-8$
a) $2 g+7=$ \square
c) $2+7 g=$ \square
b) $2 g-7=$ \square
d) $7 g-(-2)=$ \square
(3)

Rosie and Jack are substituting $b=-2$ into this expression.

$$
5-4 b
$$

Who is correct? \qquad
What mistake do you think the other person made?
\qquad
(4) Evaluate the expressions when $h=-7$
a) $2 h+16=$ \square
c) $16-2 h=$ \square
b) $2 h-16=$ \square
d) $-16-2 h=\square$
(5) Evaluate the expressions by substituting the values $a=-6, b=5$, $c=2$ and $d=-4$
a) $a-d=$

$$
7(a-d)=\square
$$

$-7(a-d)=$ \square
b) $a b=$

c) $2 d=$
$d^{2}=$ \square

\square $2 d-d^{2}=$ \qquad

Here are some expression cards.

Using only letters, write algebraic expressions that give these answers.
a) 12 \qquad -
b) -20 \qquad -
c) -15 \qquad
d) -60 \qquad

Compare answers with a partner. Did you get the same expressions? \square

An approximate rule for converting degrees Fahrenheit (F) to degrees Celsius (C) is given by the formula

$$
C=\frac{F-30}{2}
$$

a) Use this rule to convert $18{ }^{\circ} \mathrm{F}$ into ${ }^{\circ} \mathrm{C}$.
b) Aisha substitutes a different value for F and gets $C=0$ What was Aisha's value for F ? \square
10) If y is negative, which card would give the greater value?

Does it matter what the value of x is?

