A74 (H) Exponential Graphs - Sketching Rashid invests money into an account which pays a fixed rate of compound interest each year. The value, $\pounds V$, of his investment after t years is given by the formula RII $$V = 1250 \times 1.03^t$$. (a) How much money did Rashid invest? (a) £[1] (b) What rate of compound interest is paid each year? (b) % [1] (c) Circle the graph that best represents the growth in Rashid's account. A74 v. Rashid invests money into an account which pays a fixed rate of compound interest each year. The value, £V, of his investment after t years is given by the formula RII $$V = 1250 \times 1.03^{t}$$ $V = 1250 \times 1.03^{t}.$ (a) How much money did Rashid invest? (b) What rate of compound interest is paid each year? (c) Circle the graph that best represents the growth in Rashid's account. A74 V 21 The number of gannets on an island is assumed to follow this exponential growth model. $$N = 0.45 \times 1.07^{x}$$ N is the number of gannets, in thousands. x is the number of years after 1st January 2010. (a) Complete the table for $N = 0.45 \times 1.07^{x}$. A74 **R31** | х | 0 | 5 | 10 | 15 | 20 | |---|------|------|----|------|----| | N | 0.45 | 0.63 | | 1.24 | | [2] | | | | | | , | |---|------|------|----|------|----| | X | 0 | 5 | 10 | 15 | 20 | | Ν | 0.45 | 0.63 | | 1.24 | | **(b)** Draw the graph of $N = 0.45 \times 1.07^{x}$. **[2]** A74 Video created by W Neill (c) Use the graph to find the year when the gannet population is predicted to reach 1000. (c) [2] 21 The number of gannets on an island is assumed to follow this exponential growth model. $$N = 0.45 \times 1.07^{x}$$ N is the number of gannets, in thousands. x is the number of years after 1st January 2010. (a) Complete the table for $N = 0.45 \times 1.07^x$. A74 R31 | X | 0 | 5 | 10 | 15 | 20 | |---|------|------|------|------|------| | N | 0.45 | 0.63 | 0.89 | 1.24 | 1.74 | [2] | 1 | 7 Louis and Robert are investigating the growth in the population of a type of bacteria. They have two flasks A and B. | Video created by W Neill | |---|--|--------------------------| | | At the start of day 1, there are 1000 bacteria in flask A. The population of bacteria grows exponentially at the rate of 50% per day. | | | | (a) Show that the population of bacteria in flask A at the start of each day forms a geometric progression. | | | | | | | | | | | | | (2) | | | The population of bacteria in flask A at the start of the 10th day is k times the population of bacteria in flask A at the start of the 6th day. | 1 | | | (b) Find the value of k . | | | | | | | | | (2) | | | | | | | | | | | | | | At the start of day 1 there are 1000 bacteria in flask B. The population of bacteria in flask B grows exponentially at the | Video created by W Neill | |---|--------------------------| | (c) Sketch a graph to compare the size of the population of bac flask B. | • | (1) (Total for Question 17 is 5 marks) | 17 | 7 Louis and Robert are investigating the growth in the population of a type of bacteria. They have two flasks A and B. | Video created by W Neill | |----|--|--------------------------| | | At the start of day 1, there are 1000 bacteria in flask A. The population of bacteria grows exponentially at the rate of 50% per day. | | | | (a) Show that the population of bacteria in flask A at the start of each day forms a geometric progression. | | | | (A) Start × day | | | | 1000 X 1.5 Geometric prog
it has a co | ression
Instant ratio | | | The population of bacteria in flask A at the start of the 10th day is k times the population of bacteria in flask A at the start of the 6th day. (b) Find the value of k . 2 3 4 5 6 7 8 9 10 1000 1 | | | | 1000×1.5 × 5.0625 5- | 0622 | At the start of day 1 there are 1000 bacteria in flask B. The population of bacteria in flask B grows exponentially at the rate of 30% per day. (c) Sketch a graph to compare the size of the population of bacteria in flask A and in flask B. (1) (Total for Question 17 is 5 marks) (Total for Question 14 is 2 marks) 14 On the grid, sketch the curve with equation $y = 2^x$ exponential Give the coordinates of any points of intersection with the axes. (Total for Question 14 is 2 marks)